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In this paper, a probabilistic scheme was developed to predict process resource usage 
in UNIX. Given the identity of the program being run, the scheme predicts CPU time, 
file VO, and memory requirements of a process at the beginning of its life. The scheme 
uses a statetransition model of the program’s resource usage in its past executions for 
prediction. The states of the model are the resource regions obtained from an off-line 
cluster analysis of processes run on the system. The proposed rnt$hod is shown to work 
on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the 
predicted values correlate well with the actual. The coefficient of correlation between 
the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly 
small. About 82% of errors in CPU time prediction are less than 0.5 standard deviations 
of process CPU time. 
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1. Introduction 

The study reported in this paper addresses two questions: Is it possible to predict 

resource requirements of a process? And if so, how well can we predict the 

requirements? Resource usage prediction can be a sound basis for load balancing in a 

distributed computer system, because costs associated with frequent load information 

exchange or process migration can be avoided. An additional motivation is in the area of 

reliable distributed computing- knowledge of resource commitments can be valuable in 

reorganization of a system under failure. 

To our knowledge, there are no empirical studies that predict process resource usage 

using statistical methods. One relevant study is fZhou86b1, which concluded that 

system load cannot be predicted based on load indices. The study, however, does not 

address predictability of process resource requirements. 

Here, we develop a probabilistic scheme for predicting CPU time, file I/O, and 

memory requirements of a process at the beginning of its life, given the identity of the 

program being run. The scheme consists of building a state-transition model for each 

program to represent resource usage of the program in its previous executions, and a 

procedure for computing resource requirements for the next execution of the program 

based on this state-transition model. An off-line statistical clustering procedure is used 

to identify the resource regions where processes are likely to occur. These resource 

regions are the states of the state-transition model. The prediction scheme is shown to 

work using process resource usage data that was collected from a VAX"ll/780 running 

4.3 BSD UNIX" [Berkeley UNIX 861. 
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We quantLfied the quality of prediction in two ways: First, statistical correlation 

between the predicted and actual values are shown. Next, distributions of errors in 

prediction are plotted and characteristics of these distributions are discussed. 

The results of our experiments show that the coefficient of correlation between 

predicted CPU time requirements and the actual values is 0.84. A perfect prediction 

would give a result of 1.0. The distributions of prediction errors are heavily skewed 

towards small values. That is, although there are a few large errors, most errors are 

small. For example, 82% of errors in CPU time prediction are less than 0.5 standard 

deviations. When contrasted with the large variability in process CPU times (the 

difference between 99 and 1 percentiles is about 18 standard deviations), the results are 

clearly good. 

The organization of the remainder of the paper is as follows: Section 2 discusses 

previous work related to this study. Section 3 describes basic statistics of process 

resource usage in the measured system. Section 4 describes resource usage modeling. 

Section 5 describes the prediction scheme in detail and provides error statistics. Section 6 

examines issues such as the inftuence of varying the amount of past used in prediction on 

prediction error. Section 7 summarizes the paper. 

2. Background 

In this section, we discuss desirability of resource usage prediction for load 

balancing purposes. We do that by comparing the resource usage prediction with other 

empirically observed, process or system, behavior as a basis for load balancing. Many 

load balancing algorithms have been proposed (for example, [Hwang 82; Bryant and 

Finkel 811) and many more simulation studies have been made [Eager 86; 
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Bar& and Litman 85; Wang and Moris 851. But, only two measurement-based load 

balancing schemes have appeared so far. 

The first of such load balancing schemes [Leland and Ott 851 proposes a heuristic 

algorithm based on an empirically observed linear relationship between the residual CPU 

time of a process and its age. The heuristic approximates to a spiral assignmen? of 

processes. Assuming that the processes are ordered by the their age, the spiral 

assignment assigns process i to processor i mod N, where N is the total number of 

processors. Although average residual CPU time requirements of processes can be 

predicted based on age (as the authors claim), such a prediction may not hold for a single 

process. 

The second load balancing scheme [Zhou 86al is actually a family of algorithms 

that gather or propagate (depending on whether the algorithm is centralized or 

decentralized) load information about a distributed system, and use that information to 

assign a new job to a processor in such a way that it reduces process response time. In a 

related study [Zhou 86b1, Zhou also showed that process response time strongly depends 

on processor load, and that the CPU and I/O queue lengths are good indicators of the 

load. 

Using trace-driven simulations, these load balancing schemes were shown to reduce 

process response times. But, the improvements are sub-optimal. Leland and Ott’s load 

balancing algorithm performs poorly even without process migration. Zhou’s algorithms 

rely on rapid and regular propagation of the global system status to all processors. Since 

costs associated with frequent exchanges of load information or process migration can be 

substantial, proper initial placement of processes based on predicted resource 

requirements of the processes is particularly attractive. 
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In [Zhou 86b1, Zhou considered load indices as predictors of future system load, 

and he concluded that the future system load cannot be predicted based on the load 

indices. However, neither he nor any other measurement-based study ever addressed 

predictability of process resource requirements. This study proposes a probabilistic 

scheme to predict process resource requirements and shows that the scheme works on a 

trace collected from a production system. 

3. Basic Statistics 

In this section, we discuss distributions of process resource usage and der-arrival 

times. These statistics characterize the measured system and bring out the variability in 

process resource usage; the latter shows the inherent decu l ty  in predicting the process 

resource usage. 

Figures 3.1 through 3.4 show the cumulative distributions of process CPU time, file 

YO, memory usage and inter-arrival times. Most processes used only a small amount of 

CPU time (median 0.24 seconds), but there are processes that used up to 33 minutes of 

CPU time. This large variability in process CPU times is also apparent from the fact 

that the standard deviation is over 13 times larger than the mean, and that the mean is 

larger than the median by a similar ratio. 

File I/O distribution, Figure 3.2, shows that about 30% prwesses have accessed no 

file bytes at all, and that the distribution has several abrupt slope changes (for example, 

one such change can be seen just before the 10K bytes mark). As will be seen later, these 

characteristics make file I/O prediction harder than CPU time prediction. 

Memory usage distribution, Figure 3.3, shows that most processes used only a small 

fraction of memory available on the system (median memory usage is 5OK bytes). The 
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distribution also shows the smallest amount of variability. Mean is less than twice as 

large as median, and the ratio of standard deviation and mean is about the same. These 

characteristics of the processes make memory usage prediction easier than CPU time 

prediction. 

Even though the process inter-arrival time is of little co-uence to the prediction 

scheme itself, we discuss its distribution to complete the understanding of the measured 

system. As can be seen from Figure 3.4, mean and median inter-arrival times are larger 

than the corresponding statistics of process CPU times. It implies that on an average the 

system utilization is not very high. However, since there are processes requiring large 

CPU times and small inter-arrival times, the system can be seen to have heavy as well 

as light usage periods. 

In summary, resource usage distributions show that process CPU times have a large 

variability and that the system had a low as well as a high degree of utilization. 

4. Resource Usage Modeling 

In this section, w e  develop a state-transition model to describe dynamics of resource 

usage in a series of processes. Here, three resource usage parameters - CPU time, file 

YO, and memory used - define a 30 resource space, and the processes that ran on the 

system (during an interval of time) are represented by points in the 3D space. A 

statistical clustering algorithm is employed to identify the high density clusters in this 

space. These clusters, defined by their centroids, are taken to be the states for the 

processes, and appropriate transition probabilities are determined from one state to 

another. Later, this state-transition model will be used for representing the past 

resource usage, which in turn will be used to predict the future resource requirements. 
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4.1. Cluster Analysis 
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First, each of the three resource usage parameters are normalized so that the values 

are expressed in standard deviations rather than units specific to a resource. The 

normalization employed here is called z-transformation: 

xi - zi - - 
Od 

(Eq. 4.1) 

where zi is the normalized value of x i ,  and od is standard deviation of the population 

with the largest d% of samples removed. We used d = 1.5 for CPU and file I/O and 

d - 0.5 for memory. The removal of the largest d% of samples eliminates the influence 

of the outliers on the normalization, and such a normalization can be helpful in 

obtaining well-defined clusters. 

The cluster analysis used a k-means algorithm to partition an N-dimensional 

population into k clusters. Briefly, the algorithm starts with k clusters, each of which 

consists of a single random point. Each new point is added to the cluster with the 

closest centroid. After a point is added to a cluster, the mean of that cluster is 

recalculated to take the new point into account. The process is repeated several times, 

each time the initial means of k clusters are set to means from the end of the previous 

iteration, until the changes in the cluster means become negligibly small. Thus at  any 

stage, the k means are in fact the means of the clusters they represent. Therefore, k 

non-empty clusters, C,,C,, ..., C,, are sought such that the sum of squares of the 

Euclidean distances of the cluster members from their centroids is minimized, i.e., 

k 
minimize C Inij - Ti I 2 

f=l j 

where xi)  E Ci and T, is the centroid of the cluster C,. 



Cluster 
Number 

Cluster 
Frequency 

1 1.26% 
2.64% 
6.43% 
9.42% 

29.76% 
29.69% 
10.77% 
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Cluster Statistics 
(median values of the resources) 

CPU File I/O Memory 
(seconds) (Kbytes) (Kbytes) 

4.62 13.870 194.726 
0.25 O.OO0 , 446.461 
0.80 8.486 192.444 
0.25 0.732 117.294 
0.07 0.000 16.000 
0.25 2.000 50.238 
1.54 103.804 134.386 

Seven clusters of processes were formed. Table 4.1 shows the cluster statistics and 

percentage of processes in each cluster. We see from the table that clusters 1 and 7 

represent heavy processes. Together they account for 22% of the population. Cluster 1 

consists of CPU bound processes, and cluster 7 consists of balanced (CPU as well as VO> 

processes. Another interesting class of processes belong to cluster 2: they are memory 

intensive. 

4.2. StateTransition Model 

Now that we have the clusters, we can calculate transition probabilities from one 

cluster to another to build a comprehensive statetransition model. A state-transition 

model built for a series of processes, taken from the measured data, is shown in Table 

4.2 and in Figure 4.1. The processes are executions of a program. The transition 

probabilities from state i to state j , pi j  , were estimated using: 

observed number of transifions from state i to state j 

observed nwnber of transitions from state i 
(Eq. 4.2) - 

Pij - 

The state-transition model shows a distinct pattern. Transition probabilities from state 

5 to itself (0.576) and from state 7 to itself (0.5161, are the largest transition 
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cluster # 
1 
2 
3 
4 
5 
6 
7 

10 

1 2 3 4 5 6 7 

- 0.250 - - 0.250 - 0.500 
- - - - - - 
- - - - - - - 
- - - 0.410 0.205 0.154 0.231 
- 0.003 - 0.038 0576 0.050 0.333 
- 0.018 - 0.036 0.382 0.109 0.455 
- 0.003 - 0.031 0.357 0.093 0.516 

Table 4 2  A statetransition table for a program. 

cluster# 1 2 3 4 5 6 7 

probabilities out of states 5 and 7 respectively. Note that the states 5 and 7 also have 

the highest visit ratios (see below). Therefore, from the model it can be concluded that 

an execution of the program is likely to be in state 5 or 7, and in addition, once an 

execution occurs in one of the states it tends to remain there. Patterns like these suggest 

predictability. 

For some series of processes, however, transition probabilities out of a state are 

almost independent of current state. In such cases visit ratios are adequate. A visit ratio 

is the fraction of times a state occurred in a series of processes. For example, Table 4.3 

shows visit ratios for the same series of processes that are used to build the state- 

transition model of Table 4.2. States 5 and 7 are visited 0.450 and 0.412 fractions of the 

time, making them the most frequently visited states. As will be seen in the next 

section, visit ratios, instead of transition probabilities, are used in prediction, when 

transitions to a state (and hence transitions out of that state) are too few to be 

I ratio I - 0.005 - 0.056 0.450 0.077 0.412 1 
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statistically significant. 

In summary, this section introduced a state-transition model for representing the 

dynamics of resource usage in a series of processes. The states of the model are the high 

density regions of a resource space, and they were obtained from a cluster analysis of 

the processes. We observed that the state-transition model can show interesting resource 

usage patterns. 

5. A Program-hed Resource Prediction Scheme 

Now that we have a state-transition model for representing the dynamics of 

resource usage in a series of processes, we describe how it is used for prediction. The 

particular scheme described here is a program-based prediction scheme. The scheme 

predicts resources required for a process at the start of its life, given the identity of the 

program and resource usage of the program in its past executions. Hence, it is called 

program-based prediction. 

-4 The past executions of a program (for example, that of a LISP compiler) are ordered 

by the terminating times of processes, where the processes are the executions of the 

program. From this series a state-transition model, [pill, i=1,2 ,.., N, j=1,2 ,.., N, is built 

using Eq. 4.2. Table 4.2 is an example of such a state-transition model. i 

There is an upper as well as a lower limit on the number of processes used in 

building the model. The upper limit, enforced via parameter T,, restricts the amount of 

past used, and thus makes the model reflect a desired level of dynamic behavior. C 

course, the exact number of past executions used is min (m , T,), where m is the nw' 

of past executions of a program that actually took place so far. In the implea 

discwed here, we used all past executions of a program. The lower limit OP 
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of processes guarantees that the resource usage model is stable enough to make a 

prediction. Parameter T, of the prediction algorithm provides this lower limit. 

Assuming that there are enough past executions, p r j ,  j = 1,2, ...A, gives the 

probability that the next execution will be in cluster j, where I is the (resource usage) 

state of the program’s previous execution. However, these transition probabilities are 

used in computing resource requirements only if the number of transitions out of the 

state I satisfy a minimum. Parameter T, represents this minimum, and it assures that 

the state has a statistically significant number of entries and exits. If this parameter is 

not satisfied, the prediction algorithm uses visit ratios (such as the ones in Table 4.3) for 

computing resource requirements. 

The procedure for computing process resource requirements can be explained as 

follows. Since we have clustered the environment, each program execution must be in 

one of the clusters. Within each cluster, however, there is a subcluster that identifies 

the program. The midpoint of this subcluster is obtained by the most recent executions 

of the program that belong to the cluster. Then, the process resource requirements are 

obtained by multiplying the transition probabilities, pr j ,  j = 1,2, ..., N, with the 

midpoints Of the SUbclUters, djk ,  j =I, ..., N , k e p y /  J 10 , M . :  

N 

rk = C p ,  x d j k ,  k =Cpy/JlO,orMEM 
j =l 

Note that djk are specrfic to a cluster as well as a program. A fourth parameter, T,, 

determines the number of past executions used in computing d j k .  Also note that T, is 

considerably smaller than T,. For example, in our implementation T,=l, whereas TI is 

usually in the hundreds. 
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Parameters: 

T l  
T2 
T3 

7-4 

Constants: 
N 

1 
m 

Variables: 

Data structures: 

lVi 1 
Isis f . k ] 

Computations: 

Maximum number of past executions used in building the model (all). 
Minimum number of past executions required to make a prediction (3). 
Minimum number of visits to a state needed, to use the transition probabilities 
of the state (mcrx(T2, 5% of min(m, T 1 ) h  
Number of  past executions used in computing subcluster centroids (1). 

Number of clusters (7). 

Cluster number to which the previous execution belonged. 
Number of completed executions of the program so far. 

State-transition matrix, i = 1, ..., N. and j = 1, ..., N. 

Visit ratios, i = -1, ..., N. 

Resoutces used in previous T, executions, 

i = 1, ..., N, j = CPU, 110, or MEM. and k = 1, ..., T,. 

Cluster medians. i = 1, ..., N. j =CFiJ,I/O,or MEM. 

T4 

i = 1, ..., N, and j = CPU, I IO , and MEM 
if T,=O 

j =CPU,I/O,or MEM 

Figure 5.1: Summary of the Program-Based Prediction Scheme. 
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Correlation Coefficients 

Rank Product-Moment 
(Spearmd (Pearson) 
Correlation Correlation 

0.8379 0.8406 

0.8105 0.1974 

0.8925 0.8834 

The prediction scheme is summarized in Figure 5.1. Parameter values used in our 

implementation of the scheme are shown in parenthesis. Now that we have described 

the prediction scheme, we will now proceed to discuss how well the prediction scheme 

worked on the data collected. 

5.1.1. How Good is the Prediction? 

In order to determine prediction quauty , a trace-driven prediction experiment was 

conducted. The experiment consisted of predicting process resource requirements using 

the program-based method, just before the process started its life, and then observing the 

difference between the predicted and actual resource values after the process terminated. 

This section discusses results of this experiment. 

For some processes prediction could not be made owing to the lack of enough past 

executions of the program. However, both the percentage of such processes and CPU 

time used by them are quite small. With T,=3, less than 4% processes could not be 

predicted, and these processes used about 8% of CPU time. 

We quantified prediction quality in two ways. First, product-moment (Pearson) 

and rank (Spearman) correlations [Mendenhall and Sincich 841 between the predicted 
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and actual values are considered. The Pearson correlation coefficient measures the 

strength of the linear relationship between two quantities, and the Spearman’s rank 

correlation measures correlation between ranks of the two quantities. Here, the 

Spearman’s rank correlation is a better indicator than Pearson’s because the former does 

not necessarily look for a linear relationship. Table 5.1 shows that the Pearson 

correlation coefficient is over 0.84 for CPU time and memory, but it is small (about 0.20) 

for file I/O. A correlation coefficient of 1.0 implies a perfect prediction. The Spearman 

correlation coefficient, however, ranges from 0.81 to 0.89 for all the resources. Clearly, 

quality of prediction is good. 

Next, distributions of errors in prediction are considered. An error in prediction is 

the absolute difference between predicted and actual resource usage. Figure 5.2 shows 

distributions of prediction errors for CPU time, file I/O, and memory usage. It can be 

seen that error distributions are highly skewed towards small values. For example, 82% 

of errors in CPU time prediction are less than 0.5 standard deviations. Also, error in 

predicting memory usage is the smallest. 

Mean and other statistics about prediction errors and actual resource usage values 

are shown in Table 5.2. The values are in normalized units (standard deviations of the 

actual) obtained through the application of z-transformation of Eq. 4.1. The table shows 

that for CPU time the median error is 0.073 standard deviations (about 43% of the 

actual), and the mean error is 1.224 standard deviations (about 53% of the actual). 

Since the variability in CPU times is large (about 18 standard deviations), as shown by 

the difference between 99 percentile and 1 percentile, we believe that these errors are 

acceptable. 
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Table 5 2  Statistics of the Prediction Errors and Actual Resource Values. 

Resource 

CPU Time Error 
Actual 

File I/O Error 
Actual 

Memory Error 
Actual 

Statistic (in units normalized using Eq. 0.4.1) 

Mean 

1.224 
2.230 

0.485 
0.60 1 

0.140 
0.723 

~~ 

Std dev 

18.424 
32.780 

4.909 
4.755 

0.560 
1.181 

Median 

0.073 
0.168 

0.024 
0.05 1 

0.059 
0.447 

99%-1% 

16.24 
18.23 

6.13 
7.26 

0.97 
3.6 1 

Compared to errors in CPU time prediction, errors in file I/O prediction are larger, 

but errors in memory usage prediction are smaller. For example, median error in 

memory usage prediction is about 13% of actual, and mean error is about 1996 of actual. 

We considered other measures of prediction quality but rejected them on the 

grounds that they are not suited for the domain we are concerned with. For example, it 

might seem like a good idea to express the errors as percentages of the actual, and show a 

distribution of the percentages. However, (since the smallest amount of resource a 

process can use is 0) when a predicted value is smaller than actual, prediction error can 

be 09b through 1009b, but when a predicted value is larger than actual prediction error is 

potentially unbounded. This distorted view of error can lead to a misleading perception 

that a scheme that makes a few large overestimations is worse than a scheme that 

consistently underestimates. 
, .  

We have also compared means and variances of predicted and actual values, and 

examined correlation between error and actual values. Means and variances of predicted 

and actual values match very closely. Errors correlate slightly positively (about 0.20) 

with actual values, implying that large prediction errors (if any) tend to occur only 
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when outliers of process population occurs. 

In conclusion, even though the program-based prediction scheme makes a few large 

errors, errors are mostly small. 

6. Additional Implementation Issues 

In the previous section, the program-based prediction was described in detail, and 

using a trace-driven experiment, it was shown that the error in prediction is small. 

Here, we discuss the following three issues related to the implementation of the 

prediction scheme. 

1. The influence of program execution frequency on prediction quality. 

2.The influence of maximum and minfmum past used in prediction on prediction 
quality. 

3.The influence of system load on memory usage measurement. 

I 
I 
1 

6.1. The Influen- of Program Execution Frequency 

Each program is categorized as type 0, 1, 2, or 3 based on the total number of 

executions of the program during the measured period, and using a trace-driven 

experiment as described in the previous section, prediction quality is quantified for each 

program type. Results are shown in Table 6.1. 

Type 0 consists of progvms that are executed three or fewer times in the data, 

where 3 is the value used for the parameter T, (the minimum number of executions 

required to make a prediction). The remaining three types are defined such that the 

programs that are executed four (i.e., T,+l) times or more are equally divided into the 

three types. 
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Item 

Number of executions 

Percent programs 

Percent processes 

Correlation of predicted 
and actual CPU times 

CPU time mean 
statistics std dev 
(in norm. units) median 

Error in mean 
prediction std dev 
(in norm. units) median 

Error in mean 
prediction as std dev 
pct of actual median 

Type#O Type#l Type#2 Type#3 
programs programs programs programs 

1 thru3 4 thru 8 9 thru 45 46 or more 

36.4% 21.2% 21.0% 2 1.4% 

2.7% 0.8% 4.4% 92.1% 

- 0.803 0.794 0.879 

- 19.971 13.629 1.531 
- 135.785 86.049 24.735 

0.488 0.595 0.160 

7.568 0.828 - 1 1.766 
- 90.537 54.498 1 1.935 
- 0.099 0.238 0.069 

- 59% 56% 54% 
- 67% 63% 48% 
- 20% 40% 43% 

- 

As can be seen from Table 6.1, about 36% of programs belong to type 0, and about 

21% of programs belong to each of the remaining types. However, processes resulting 

from type 0 programs constitute only 2.7% of total processes. In comparison, processes 

resulting from type 3 programs are over 92% of the total. Programs of type 2 and 1 

programs provide 4.4% and 0.8% processes each. Clearly, a small fraction of programs 

are executed frequent€y (e.g,, 21% of programs are executed 92% of times). 

For type 3 programs, the coefficient of correlation between predicted and actual 

CPU times is 0.879, and for types 1 and 2, the coefficient is about 0.8. A correlation 

coefficient of 1.0 implies a perfect prediction. Given that the observed correlations 

coefficients are above 0.8, prediction quality is quite good for processes produced by 
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programs of any type. The prediction is particularly good for processes produced by 

type 3 programs, and these processes constitute a major fraction of processes that ran on 

the system. 

Table 6.1 also shows statistics for process CPU times and prediction errors for each 

category of programs. The CPU times and errors are reported in normalized units 

obtained through the application of Eq. 4.1, so that these results can be easily compared 

with those reported in the previous section. The average CPU time used is the largest for 

processes resulting from type 1 programs, followed by processes resulting from type 2 

programs. The average error in prediction follows the CPU time usage pattern. 

However, when expressed as a percentage of average CPU time used, the prediction error 

is comparable for all program types, with the error percentage being slightly higher for 

infrequently executed programs. 

In summary, it is shown that the quality of prediction is essentially independent of 

program execution frequency, except for programs that are executed less than 4 times. 

These programs constitute about 36% of all executed programs, but produce only 2.7% of 

all processes. The next section discusses how prediction quality varies when the 

maximum and minimum past used in prediction is varied. 

6.2. The Influence of Maximum and Minimum Past Used 

Here, we quantify the influence of maximum and minimum past used in the 

prediction scheme (parameters TI and T, of the prediction scheme) on quality of 

prediction. 
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1.38 - 

1.36 - 
Mean Error 

in 
CPU Time 1.34 - 
Prediction 

(in norm. units) 
1.32 - 

1.3 - 

A. Maximwn Past Used 

First, the trace-driven experiment described in the previous section is repeated 

several times, each time with a different value for the maximum past used in building 

the resource usage model, while keeping the minimum past fixed at 1. The mean error' 

in CPU time prediction, obtained from these experiments, is shayn in Figure 6.1 for the 

maximum past ranging from 1 through 300. 

The figure shows that the mean error decreases as the maximum past is increased. 

The rate of improvement saturates around a value approximately equal to 100. Note, 

however, that a change in the maximum past from 1 to 300 brings about a reduction of 

Minimum Past Used: 1 

about 7% in mean error for CPU time prediction. 

I 
10 

I 
100 

Maximum Number of Past Executions Used (log scale) 

Figure 6.1: Effects of Changing Maximum Past Used in Prediction. 

'The error is shown in the sul lc  normalized units as the actual process CPU time, which is obtained using Eq. 4.1. 
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An examination of error distributions for different values of maximum past shows 

that when a small amount of maximum past is used (say T, = 11, the prediction is 

overly sensitive to local variations in the resource usage pattern of the predicted 

program. The error distribution for such a small maximum past (i.e., T, = 1) is more 

heavily skewed towards small values and has a longer tail than the error distribution 

for a large maximum past (say, TI = 300). Thus, when a large amount of maximum 

past is used, the prediction errors are evenly distributed while both large as well as 

small errors decrease. Consequently, using a large amount of maximum past (for 

example, 300) has a stabilizing effect on prediction, and results in a small average error. 

B. Minimum Past Used 

Next, the effect of varying the minimum past used, parameter T,, on prediction 

quality is examined. The trace-driven experiments are repeated once again with different 

values of minimum past, while keeping the maximum past fixed at 200. The results of 

these experiments are shown in Figure 6.2. The mean errox? in CPU time prediction 

drops dramatically as the minimum past is increased - the prediction error reduces by 

about 38% as the minimum past is changed from 1 to 20 executions. 

However, unlike the changes in maximum past, increasing the minimum past has a 

side-effect of decreasing the percentage of predictable processes. More importantly, an 

increase in the minimum past decreases the percentage of predicted CPU usage by a 

considerable amount. For example, as the minimum past is raised from 1 to 20, the 

percentage of predicted processes drops by only 9%, but the percentage of predicted CPU 

q h e  mor  is shown in the sune normalized units as the actual pass CPU times, which is obtained uing Eq. 4.1. 
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Mean Error 
in 

CPU Time 
Prediction 

(in norm. units) 1 

0.8 ' I I I I I 
1 2 5 10 20 
Minimum Number of Past Executions Used (log scale) 

100 - 

90- 

'4 70 

Percent 

60 1 .-.....*. pct. predicted processes 
pct. predicted CPU usage 

Maximum Past Used: 200 

50 
1 2 5 10 20 

Minimum Number of Past Executions Used (log scale) 

Figure 6 2  Effects of Changing Minimum Past Used in Prediction. 



25 

program characteristics 

running time. memory usage pattern 

large (30 sets) 
small (3 secs) 
large (30 secs) 
small (3 secs) 

ws << address space 
w s  << address space 
ws = address space 
ws = address space 

usage drops by 43%. So, a small minimum past, such as 3, is recommended. 

correlation Is correlation 
coefficient statistically 

signiiicant? 

-0.7824 Yes 
-0.4809 YeS 
0.0435 No 
0.2 134 No 

63. System Load Influence on Memory Usage Measurement 

The measured per process memory usage is the average amount of memory 

allocated to the process by the system. Since this allocation can depend on system load, 

we study the extent of such a dependency in this section. (The system load referred to 

here is the average number of ready-to-run processes on the system in the last one 

minute.) In order to do so, four programs, each with a different running time and 

memory usage pattern, were run on the measured system at regular (about 12 to 15 

minutes) intervals for about two days, while the system was in normal use. For each 

execution of these programs, the system load and resource usages were recorded. 

Based on these experimental measurements, we calculate the coefficient of 

correlation between the system load and memory usage, for each of the four programs. 

The results are shown in Table 6.2. As the table shows, for a long running program (e.g. 

30 secs) having a small working set compared to its address space, the system load has 

the most prominent effect on the measured memory usage. The correlation coefficient for 

Table 6 2  Correlation between system load and process memory usage. 
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this type of program is -0.7824, indicating a negative correlation. However, for a 

program with a similar memory referencing pattern, but a shorter running time, the 

effect is not as strong. For this type of program, the coefficient of correlation is only 

-0.48. Finally, for a program having the working set that is almost equal to its address 

space, independent of its running time, the system load influence on memory usage 

measurement is statistically insignificant. 

The following, however, should be noted in this regard. Even when measurements 

are sensitive to system load, the resource usage model can incorporate these influences, 

and the prediction made using the model is valid if the target processor has a load 

similar to that of the measured processor. Since, the latter condition is likely to be true 

in a load balanced system, the influence of system load on memory usage measurement 

is not a serious problem. 

In this paper, we described a probabilistic scheme for predicting CPU time, file 110, 

and memory requirements of a process at the beginning of its life. Given the identity of 

the program being run, this prediction scheme uses a state-transition model of the 

resource usage in the previous executions of the program. The states of the model are 

obtained from a statistical cluster analysis of the processes run on the system (in a day). 

The prediction scheme was shown to work on the measured data using a trace-driven 

prediction experiment. 

The results of the trace driven experiment show that the predicted values correlate 

well with the actual. The coefficient of correlation between the predicted and actual 

CPU time is 0.84. Further, the error distributions show that the errors in prediction are 
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mostly small. For example, 82% of errors in CPU time prediction are less than 0.5 

standard deviations of process CPU time. These results are particularly interesting since 

Zhou’s study [Zhou 86bl of system load indices as predictors of future load correlated 

poorly with the actual (correlation coefficients are always less than 0.45). Applications 

of resource usage prediction in load balancing and in system reorganization under failure 

are suggested as future work. 
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